Overview

DIBELS ${ }^{\circ}$ Math:

An Overview for

Kindergarten - Sixth Grade

Dr. Courtney Wheeler, Dynamic Measurement Group
Oregon RTI Conference 2016

What is DIBELS ${ }^{\circ}$ Math?

- A set of measures used to assess mathematics skills for students from kindergarten through sixth grade that can be used to:
- Identify students who may be at risk for mathematics difficulties
- Help teachers identify areas to target instructional support
- Monitor progress of students

Foundations of DIBELS ${ }^{\circ}$ Math

- Prevention focus-We CAN change outcomes for students
- DIBELS Math is one part of a system
- DIBELS Math is an indicator
- Teach mathematics concepts explicitly and thoroughly
- Monitor progress frequently and efficiently
- Use DIBELS Math within an Outcomes-Driven Model of decision making
- Outcomes drive instructional change

DIBELS Math Measures

Early Numeracy

Beginning Quantity Discrimination Number Identification Fluency
Next Number Fluency
Advanced Quantity Discrimination
Missing Number Fluency
Computation
Concepts and Applications

Time to Test

Grade	\# of Measures	Time to Test	Total
Kindergarten	BOY, MOY, EOY: BQD, NIF, NNF	3 one-minute tests given individually	3 minutes
First Grade	BOY: NIF, NNF, AQD, MNF, Computation	4 one-minute tests given individually 2 two-minute tests done whole class	8 minutes
	MOY, EOY: AQD, MNF, Computation individually 2 one-minute tests given whole class	6 minutes	

Measures by Grade

	Beginning Quantity Discrimination	Number Identification	Next Number Fluency	Advanced Quantity Discrimination	Missing Number Fluency	Computation	Concepts and Applications
K							
$1{ }^{\text {st }}$							
$2^{\text {nd }}$							
$3{ }^{\text {rd }}$							
$4^{\text {th }}$							
$5^{\text {th }}$							
$6^{\text {th }}$							

Features of DIBELS Math

- Linked to CCSS
- Standardized
- Timed
- Brief
- Problem types carefully constrained within and across probes
- Purposes - universal screening and progress monitoring
- Benchmark goals

Linkages to Math Research

- Early Numeracy based on foundational skills required to develop number sense
- Number sense involves basic "intuitions" and ideas about numbers (Lee et al., 2008).
- includes the ability to compare the magnitude of numbers, to understand the relative effect of arithmetical operations on numbers, and to have meaningful referents for number and quantity (NСтм, 1989)
- Number sense "refers child's fluidity and flexibility with numbers, the sense of what numbers mean, and an ability to preform mental mathematics and to look at the world and make comparisons" (Gersten \& Chard, 1999, p. $19 \& 20$).

Linkages to Math Research

- Although hard to define, number sense predicts academic achievement (Berch, 2005; Gersten et al., 2005).
- Number sense has been operationalized in various ways (see Lago \& DiPerna, 2010)
- Common underlying factors include:
* Magnitude Comparison
* Subitization
* Oral counting
* Number identification
* Identifying the missing number
* Basic computation

Link to Common Core State Standards

Link to Common Core State Standards

Link to Common Core State Standards

Link to Common Core State Standards

Grade	Common Core State Standards in Mathematics (Domain)	DIBELS Math Measures
5	Operations and Algebraic Thinking Numbers and Operations in Base Ten Measurement and Data Geometry Numbers and Operations - Fractions	Concepts and Applications
6	Ratios and Proportional Relationships Statistics and Probability The Number System Expressions and Equations Geometry	Concepts and Applications

Beginning Quantity Discrimination

Beginning Quantity Discrimination (BQD)

Format:

- Assessor shows page of dots to the student.
- The assessor then provides a set of standard directions that ask the student to say the number which represents the larger set of dots from two distinct sets of dots.

Score:

- Total of correctly identified numbers in 1 minute.

Beginning Quantity Discrimination

Beginning Quantity Discrimination Video

Number Identification Fluency

Skill	Number Identification
Administration Time	1 minute
Administration Schedule	Beginning of kindergarten to beginning of first grade
Score	1 point for each correctly identified number
Wait Rule	If the student does not respond within 3 seconds on an item through the number corr answer and mark a slash (/)
Discontinue Rule	Zero points in the first five items (the first line)

Number Identification Fluency

Format:

- Assessor shows page with numbers to the student.
- The assessor then provides a set of standard directions that ask the student identify the printed number before him/her (digits 1-99)
Score:
- Total of correctly identified numbers in 1 minute.

Number Identification Fluency

Number Identification Fluency Video
.7. ${ }^{2}$ Dynamic
20. Measurement

Next Number Fluency

Next Number Fluency
Next Number Fluency

$\mathbf{3}(4)$	$\mathbf{8}(9)$	$\mathbf{3 3}(34)$	$\mathbf{5}(6)$	$\mathbf{1 5}(16)$	-
$\mathbf{3 7}(38)$	$\mathbf{7 0}(71)$	$\mathbf{1 0}(11)$	$\mathbf{4 0}(41)$	$\mathbf{1 1}(12)$	-
$\mathbf{1 9}(20)$	$\mathbf{3 1}(32)$	$\mathbf{6}(7)$	$\mathbf{6 5}(66)$	$\mathbf{1 3}(14)$	-
$\mathbf{3 6}(37)$	$\mathbf{1 2}(13)$	$\mathbf{5 8}(59)$	$\mathbf{1 8}(19)$	$\mathbf{4 1}(42)$	-
$\mathbf{7 (8)}$	$\mathbf{4 6}(47)$	$\mathbf{2 0}(21)$	$\mathbf{1}(2)$	$\mathbf{1 6}(17)$	-
$\mathbf{2 7}(28)$	$\mathbf{9}(10)$	$\mathbf{4 3}(44)$	$\mathbf{1 4}(15)$	$\mathbf{4}(5)$	-

Format:

- Assessor says a series of numbers, one at a time, to the student and asks the student to say the number that comes next.

Score:

- Total of correctly named numbers in 1 minute.

Next Number Fluency

Next Number Fluency Video

Advanced Quantity Discrimination

Format:

- The assessor provides a set of standard directions that ask the student to provide the number that is more.
Score:
- Total of correctly named numbers in 1 minute.

Advanced Quantity Discrimination

Advanced Quantity Discrimination Video

Missing Number Fluency

Skill	Strategic Counting (extending the counting sequence- counting by $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s})$			
Administration Time	1 minute			
Administration				
Schedule		Beginning of first to end of first grade	Score	1 point for each correct number
---:	:---			
Wait Rule	If the student does not respond within $\mathbf{5}$ seconds on an item, provide the correct answer and mark a slash (/) through the number			
Discontinue Rule	Zero points in the first six items			

Missing Number Fluency

$15 \quad 17 \quad 18$

Format:

- The assessor provides a set of standard directions that ask the student to provide the missing number.

Score:

- Total of correctly identified numbers in 1 minute.

Missing Number Fluency

Missing Number Fluency

Computation

Skill	Basic Computation
Administration Time	$2,4,5,6$ minutes per worksheet depending on grade
Administration Schedule	Beginning of first grade to end of sixth grade
Score	Correct digits in final answer
Wait Rule	No wait rule
Discontinue Rule	No discontinue rule

Computation - Examples

Concepts and Applications

Skill	Understanding math concepts and vocabulary, and applying that knowledge to solving problems.
Administration Time	8,12 or 16 minutes per worksheet depending on grade
Administration Schedule	Beginning of second grade to end of sixth grade
Score	Correct digits in final answer or the exact answer
Wait Rule	No wait rule
Discontinue Rule	No discontinue rule

Concepts and Applications Example

Concepts and Applications
Teacher Key Example

Concepts and Applications
Teacher Key Example
DIBELS' Math Early Release / Concepts and Applications

Preliminary Benchmark Goals for DIBELS Math

DIBELS ${ }^{\circ}$ Math Benchmark Goals

What is a Benchmark Goal?

A research-based target score

- Represents the lowest level of performance on a measure that predicts reaching the next goal
- Consists of three parts: a mathematics skill, a level of performance, and a point in time
- If a student achieves a benchmark goal, the odds are in favor of that student achieving later mathematics outcomes
How are the Benchmark Goals derived?
Based on longitudinal research examining how a score on a measure at a point in time predicts later mathematics outcomes

Three Levels of Performance Compared to Benchmark Goals

If a student achieves a Benchmark Goal, the odds are in favor of that student achieving later mathematics outcomes.

- At or Above Benchmark: Odds are generally 80\% to 90% of achieving subsequent benchmark goals and important mathematics outcomes. Student is likely to make adequate progress with effective core instruction.

Composite Scores

- Composite scores provide the best overall estimate of the student's skills.
- Composite scores take all of the measures into consideration
- Different weights are given to different measures depending on the time of year
- Composite scores may increase or decrease because of the number of measures that make up them (e.g. $1^{\text {st }}$ grade from fall to winter)

Benchmark Goals - Kindergarten

DIBELS Math Preliminary Benchmark Goals and Cut Points for Risk for Kindergarten Children

DIBELS Math Measure	DIBELS Math Score Level	Likely Need for Support	$\begin{aligned} & \text { Beginning } \\ & \text { of Year } \end{aligned}$	Middle of Year	$\begin{gathered} \text { End } \\ \text { of Year } \end{gathered}$
DIBELS Math Composite Score	At or Above Benchmark Below Benchmark Well Below Benchmark	Likely to Need Core Support Likely to Need Strategic Support Likely to Need Intensive Support	$\begin{gathered} 26+ \\ 15-25 \\ 0-14 \end{gathered}$	$\begin{gathered} 72+ \\ 51-71 \\ 0-50 \end{gathered}$	$\begin{gathered} 88+ \\ 67-87 \\ 0.66 \end{gathered}$
Beginning Quantity Discrimination (BQD)	At or Above Benchmark Below Benchmark Well Below Benchmark	Likely to Need Core Support Likely to Need Strategic Support Likely to Need Intensive Support	$\begin{gathered} 5+ \\ 2-4 \\ 0-1 \end{gathered}$	$\begin{gathered} 8+ \\ 5-7 \\ 0-4 \end{gathered}$	$\begin{gathered} 12+ \\ 9-11 \\ 0-8 \end{gathered}$
Number Identification Fluency (NIF)	At or Above Benchmark Below Benchmark Well Below Benchmark	Likely to Need Core Support Likely to Need Strategic Support Likely to Need Intensive Support	$\begin{gathered} 6+ \\ 4-5 \\ 0-3 \end{gathered}$	$\begin{gathered} 15+ \\ 8-14 \\ 0.7 \end{gathered}$	$\begin{gathered} 25+ \\ 14-24 \\ 0-13 \end{gathered}$
Next Number Fluency (NNF)	At or Above Benchmark Below Benchmark Well Below Benchmark	Likely to Need Core Support Likely to Need Strategic Support Likely to Need Intensive Support	$\begin{gathered} 5+ \\ 2-4 \\ 0-1 \end{gathered}$	$\begin{gathered} 11+ \\ 8-10 \\ 0-7 \end{gathered}$	$\begin{gathered} 13+ \\ 10-12 \\ 0-9 \end{gathered}$

The benchmark goal is the number provided in the At or Above Benchmark row. The cut point for risk is the first number provided in the Below Benchmark row. At the beginning, the DIBELS Math Composite is $2 *$ BQD $+1^{*}$ NIF +2 *NNF. At the middle, the DIBELS Math Composite is 3^{*} BQD $+1^{*}$ NIF $+3^{*}$ NNF. At the end of year, the DIBELS Math Composite is 2^{*} BQD $+1^{*} \mathrm{NIF}+3^{*} \mathrm{NNF}$.

Benchmark Goals - Second Grade

DIBELS Math Preliminary Benchmark Goals and Cut Points for Risk for Second Grade Children

DIBELS Math Measure	DIBELS Math Score Level	Likely Need for Support	Beginning of Year	Middle of Year	$\begin{aligned} & \text { End } \\ & \text { of Year } \end{aligned}$
DIBELS Math Composite Score	At or Above Benchmark	Likely to Need Core Support	30+	48+	$66+$
	Below Benchmark	Likely to Need Strategic Support	20-29	34-47	48-65
	Well Below Benchmark	Likely to Need Intensive Support	0-19	0-33	0-47
Computation (Comp)	At or Above Benchmark	Likely to Need Core Support	7+	11+	16+
	Below Benchmark	Likely to Need Strategic Support	4-6	8-10	12-15
	Well Below Benchmark	Likely to Need Intensive Support	0-3	0-7	0-11
Concepts and Applications (C\&A)	At or Above Benchmark	Likely to Need Core Support	15+	$23+$	$33+$
	Below Benchmark	Likely to Need Strategic Support	8-14	15-22	22-32
	Well Below Benchmark	Likely to Need Intensive Support	0-7	0-14	0-21

The benchmark goal is the number provided in the At or Above Benchmark row. The cut point for risk is the first number provided in the Below Benchmark row. At the beginning, middle and end of year, the DIBELS Math Composite Score is 1° C CAA $+2^{*}$ Comp.

How Schools are Using DIBELS Math

Outcomes-Driven Model

Outcomes Driven Model

steps:

1. Identify need for support.
2. Validate need for support.
3. Plan and implement support.
4. Evaluate and modify support.
5. Review outcomes.

Outcomes-Driven Model Steps and Questions

ODM Step	Questions: Systems	Questions: Student
1. Identify Need for Support	Are there students who may need support? How many students may need support?	Which students may need support?
2. Validate Need for Support	Are we reasonably confident in the accuracy of our data overall?	Are we reasonably confident that the identified students need support?
3. Plan and Implement Support	At what grade levels and/or in what areas may support be needed? What are our system-wide goals? What is our system-wide plan for support?	What are the student's skills and needs? What is the plan of support for the student, including goals and plan for progress monitoring?
4. Evaluate and Modify Support	Are we making progress toward our system-wide goals? Is our system of support effective?	Is each student making adequate progress? Is the support effective for individual students?
5. Review Outcomes	Have we met our system-wide goal? Is our system of support effective? Are there students who may need support? How many students may need support?	Has the support been effective for individual students? Has the student met his/her goal? Which students may need support?

Sample School Overview Report $1^{\text {st }}$ Grade - DIBELSnet

Sample Classroom Report: Middle of Kindergarten

Sample Classroom Report: Middle of 1st

Research Process

Pilot (2006-2007)

- Spring benchmark testing, over 1200 students per grade K-5
- Alternate-form reliability of Computation
- Informal examination of Computation item-level information, resulting in minor changes to scope and sequence

Examination of different scoring methods for Computation and Oral Counting
Customer feedback on usability and scope and sequence

Beta 1 (2007-2008)

- Winter and Spring benchmark testing, approx. 500-1000 students per grade K-5
- Examination of growth over time
- Wider-scale customer feedback on usability and scope and sequence, including preferences on using Computation vs. Early Numeracy for Fall of First Grade

Validity comparisons as available
Beta 2 (2008-2009)

- Fall, Winter, and Spring benchmark testing
- Examination of growth over time
- Wide-scale customer feedback
- Validity comparisons as available
- Alternate-form reliability of current Computation forms and scoring method

Research Process

- Prior to Beta 3 (2011-2012)
- Principal components analysis helped to group the categories of problems into common skills sets based on difficulty
- Examined the common skill sets and then rank the problems according to difficulty with Analysis of Means
- Using multiple comparison procedures individual problems arranged into packets of problems of similar difficulty
- Based on the number of items answered on the worksheets, we evaluated the time limits of the measures.
- Evaluated different methods of scoring computation problems.
- Beta 3 (2011-2012)
- Examined problems at item-level on untimed Computation worksheets with principal components analysis and item response difficulty and discrimination estimates
- Time limit analysis was conducted
- Confirmatory factor analysis was conducted
- Altered problem types based on results

Research Process

Benchmark Goals Study - Early Numeracy and Computation (2012-2013)

- Examined what levels of performance on DIBELS Math Early Numeracy and Computation measures predict a student is likely or unlikely to score at or above the 40% ile on selected outcome measures (GMADE in grades K -5)
- Examined the correlations between DIBELS Math Early Numeracy and Computation measures and the selected outcome measures (GMADE in grades K-5).
- Examined the inter-rater reliability, alternate form reliability, and test-retest reliability for the DIBELS Math Early Numeracy and Computation measures

Research Process

- Concepts and Applications Pilot Study (2012-2013)
- Examined problems at item-level on untimed Concepts and Applications worksheets with principal components analysis and item response difficulty and discrimination estimates
- Time limit analysis was conducted
- Altered problem types and eliminated problems based on results
- Concepts and Applications Beta 1 Study (2013-2014)
- Examine problems at item-level on untimed Concepts and Applications worksheets with principal components analysis and item response difficulty and discrimination estimates
- Time limit analysis will be conducted
- Confirmatory factor analysis will be conducted
- Problem types will be altered based on results

Research Process

Concepts and Applications and Computation $3^{\text {rd }}$ and $6^{\text {th }}$ Grade Reliability and Validity Study (2014-2016)

- Examining what levels of performance on DIBELS Math measures predict a student is likely or unlikely to score at or above the 40% ile on school provided outcome measures
- Examining the correlations between DIBELS Math measures Concepts and Applications and $3^{\text {rd }}$ and $6^{\text {th }}$ Computation measures and the school provided outcome measures.
- Examining the inter-rater reliability, alternate form reliability, and test-retest reliability for the DIBELS Math Concepts and Applications and $3^{\text {rd }}$ and $6^{6 \text { h }}$ grade Computation measures

Themes
We Can Build Futures If We:

- SUPPORT students, teachers, schools.
- CARE about mathematics.
- START EARLY: Trajectories are difficult to change
- SET ambitious goals.
- TEACH the basic early numeracy/mathematics skills.
- MONITOR progress toward goals.
- DO SOMETHING if/when students are not on track.
- CELEBRATE successes!

Contact Information

- Early Release of measures to interested schools
- Interested in learning more information?
- Contact: info@dibels.org, (541) 431-6931
- Visit: dibels.org

